Hampton University Proton Therapy Institute 2021

Dr. Allan Thornton

Take a virtual tour of Hampton University Proton Therapy Institute and listen to Dr Allan Thornton explaining this cutting-edge cancer treatment.

2021 Virtual Tour of HUPTI

Because we use charged particles as our form of radiation, we can control the range of the beam. That results in treating about 70% less normal tissues than with any form of X-ray therapy currently practiced.

We treat a widening number of tumors. Essentially we treat any solid tumor that can be treated with conventional X-ray based therapy, but  with significantly less side effects to normal tissue.

We treat essentially all solid tumors that we normally treat with radiation therapy with proton therapy. Those are specifically : brain tumors – in particular brain tumors, posterior fossa tumors, medulloblastoma – we also treat a significant number of prostate patients, rectal cancer patients, lung cancer, women with breast cancer – particularly the left side of breast cancer where we can spare the heart -, and we even treat some skin tumors and lymph node tumors – lymphomas – more successfully and with much less side effects than with conventional therapy.

— Dr Allan Thornton

International patients can contact SAH Care to see if Proton Therapy is right for them.

Daily anesthesia and Proton Therapy

Proton Therapy is unique in its accuracy and in its heightened ability to avoid damage to healthy cells or tissues during treatment. Because Proton Therapy precisely targets the tumor, it requires exact patients positioning. While the procedure itself is painless, the immobilization constraints may necessitate the provision of sedation or anesthesia for children, during simulation and treatment, to ensure patient safety.

This procedure might sound frightening, but watch Zahra, she has given us another great lesson here !

Having already received 20 fractions, she is still happy to come every day to the Hampton Proton Therapy Centre to get her treatment.

Zahra is a shy 7-year old girl diagnosed with medulloblastoma on September 2019. Her presenting symptoms included ataxia, nystagmus, and headaches. She quickly underwent a surgery to remove most of her brain tumor, and a shunt was placed during the resection due to papilledema and evidence of hydrocephalus at diagnosis.

On post-operative imaging, a 2 cm residual disease was identified. Her mother noted some right-sided motor weakness post-operatively and posterior fossa syndrome. By November 2019, Zahra started weekly chemotherapy and had been referred to SAH Care for Proton Therapy.

Zahra traveled to the US with her parents and has been treated by our Dr Allan Thornton at the Hampton University Proton Therapy Institute. She came to the centre every day from Monday to Friday for 1 hour to receive her recommended total of 33 fractions. And every day she received a light anesthesia to ensure she didn’t move during the treatment.

Zahra had elected Walter, our Anesthesia Nurse, as her new best friend.  Every day, they were walking together along the corridor to fetch  Zahra’s anesthesia stretcher. Singing, playing, and laughing.

Zahra successfully completed her treatment in Hampton and went back home. Approximately 2 months after completion of proton therapy, all symptoms are currently resolved per Zahra’s mother.

When we saw her in February 2020, Zahra appeared to be recovering well and no longer complained of any symptom. She plays well and seems to have few current limitations to her activity.

Thank you Zahra for this lesson in courage and for your trust and confidence in our team !

This is SAH Care

We could tell you the story of Zahra, a 6-year old girl from Bahrain diagnosed with a medulloblastoma.

We could detail her pathology and the treatment plan agreed with her local medical team.

We could report the heartbreaking words from her family.

We could depict the efforts by the Ministry of Health and US Embassy Teams to have her traveling as soon as possible.

We could relate her journey to Hampton.

We could talk about the exams and procedures she underwent.

We could narrate how we’ve struggled to get her chemotherapy in short-supply.

We could elaborate on the benefits of Proton Therapy over other treatment modalities in her case.

But we can’t describe the love we share with our patients.

Zahra has elected Walter, our Anesthesia Nurse, as her new best friend.  They’re walking together along the corridor to fetch  Zahra’s anesthesia stretcher. They come from different countries, 50 years separate them, they don’t speak a common language, and yet they truly love each other.

This is SAH Care !

Medulloblastoma is an excellent candidate for proton therapy

Medulloblastoma: optimizing care with a multidisciplinary approach, Thomas A, Noël G

(…) In the last decade, the use of proton therapy has rapidly increased as a result of its capacity to better spare organs at risk by eliminating the exit radiation dose due to the characteristic dose distribution of the proton beam modeled by the Bragg peak. This treatment is particularly relevant in childhood malignancies since it offers the promise of decreased late radiation-related morbidities, especially second neoplasms. Medulloblastoma, specifically due to a particularly large irradiation field, is an excellent candidate for proton therapy. Indeed, protons eliminate the dose of exit radiation into the chest, abdomen, and pelvis as well as the cochlea, pituitary, and hypothalamus of children after CSI. Translation into quality of life (QoL) has been studied in a prospective trial. QoL scores were found to improve over time after proton CSI, and after 5 years, children-reported scores were statistically similar to those of healthy children, but the parent-reported scores remained statistically lower than those reported by the parents of healthy children. To evaluate the superiority of proton therapy in medulloblastoma treatment with an evidence-based approach, a review recently compared the outcomes of pediatric medulloblastoma patients between proton- and photon-mediated CSI, and revealed the advantage of proton therapy in organs at risk sparing, normal organ dysfunction, and secondary malignancy risks compared to various (mostly 3D-CRT) photon techniques. A comparison of target coverage between both radiation modalities showed either similar or better results with proton therapy. However, proton therapy is a modern radiation modality, and the earliest study considered in this review was from 1997. For that reason, data regarding late toxicity after proton therapy are not available. On the other hand, we cannot ignore that second neoplasms after CSI mostly occur in the neuraxis, and this effect cannot be avoided with any irradiation modality as long as CSI is performed. The only way to determine with any certainty whether proton therapy should be developed as a standard of care for CSI would be through a prospective randomized controlled trial comparing both treatment modalities. Such a trial should include cost-effectiveness analysis since proton therapy is undoubtedly associated with higher initial infrastructural costs than those for photon therapy. At the present time, proton therapy remains a limited resource, and socioeconomic factors impact access to this treatment. (…)